Transposon Therapeutics, Inc.

Return to Connect

Connect

Literature

  1. Frost B, Hemberg M, Lewis J, Feany MB. Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci. 2014;17(3):357-366. doi:10.1038/nn.3639 (https://pubmed.ncbi.nlm.nih.gov/24464041/
  2. Guo C, Jeong H-H, Hsieh Y-C, et al. Tau Activates Transposable Elements in Alzheimer’s Disease. Cell Rep. 2018;23(10):2874-2880. https://pubmed.ncbi.nlm.nih.gov/29874575/
  3. Liu EY, Russ J, Cali CP, Phan JM, Amlie-Wolf A, Lee EB. Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons. Cell Rep. 2019;27(5):1409-1421.e6. doi:10.1016/j.celrep.2019.04.003 (https://pubmed.ncbi.nlm.nih.gov/31042469/)
  4. Thomas CA, Tejwani L, Trujillo CA, et al. Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell. 2017;21(3):319-331.e8. doi:10.1016/j.stem.2017.07.009 (https://pubmed.ncbi.nlm.nih.gov/28803918/)
  5. Rice GI, Meyzer C, Bouazza N, et al. Reverse-Transcriptase Inhibitors in the Aicardi–Goutières Syndrome. N Engl J Med. 2018;379(23):2275-2277. doi:10.1056/nejmc1810983 (https://pubmed.ncbi.nlm.nih.gov/30566312/)
  6. Sun W, Samimi H, Gamez M, Zare H, Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018;21(8):1038-1048. doi:10.1038/s41593-018-0194-1 (https://pubmed.ncbi.nlm.nih.gov/30038280/)
  7. Sedivy JM, Kreiling JA, Neretti N, et al. Death by transposition - the enemy within? BioEssays : news and reviews in molecular, cellular and developmental biology. 2013;35(12):1035-1043. doi:10.1002/bies.201300097 (https://pubmed.ncbi.nlm.nih.gov/24129940/)
  8. Prudencio M, Gonzales PK, Cook CN, et al. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet. 2017;26(17):3421-3431. doi:10.1093/hmg/ddx233 (https://pubmed.ncbi.nlm.nih.gov/28637276/)
  9. DeCecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566(7742):73-78. doi:10.1038/s41586-018-0784-9 (https://pubmed.ncbi.nlm.nih.gov/30728521/)
  10. Gorbunova V, Seluanov A, Mita P, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596(7870):43-53. doi:10.1038/s41586-021-03542-y (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600649/)
  11. Lopez-Grancha M, Bernardelli P, Moindrot N, et al. A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer’s disease experimental model. Pharmacol Exp Ther. 2021;378(3):262-275. doi:10.1124/jpet.121.000590 (https://pubmed.ncbi.nlm.nih.gov/34531308/)
  12. Hwang K-D, Bak MS, Kim SJ, Rhee S, Lee Y-S. Restoring synaptic plasticity and memory in mouse models of Alzheimer’s disease by PKR inhibition. Mol Brain. 2017;10(1):57. doi:10.1186/s13041-017-0338-3 (https://pubmed.ncbi.nlm.nih.gov/29233183/)
  13. Ramirez P, Zuniga G, Sun W, et al. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog Neurobiol. 2022;208:102181. doi:10.1016/j.pneurobio.2021.102181 (https://pubmed.ncbi.nlm.nih.gov/34670118/)
  14. McCauley ME, O’Rourke JG, Yáñez A, et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature. 2020;585(7823):96-101. doi:10.1038/s41586-020-2625-x  (https://www.nature.com/articles/s41586-020-2625-x)